AMSER Case of the Month January 2025

59-year-old female with headache and eye pain

Stephen Trudeau, MS4 Columbia University Vagelos College of Physicians and Surgeons

Pallavi Utukuri, MD

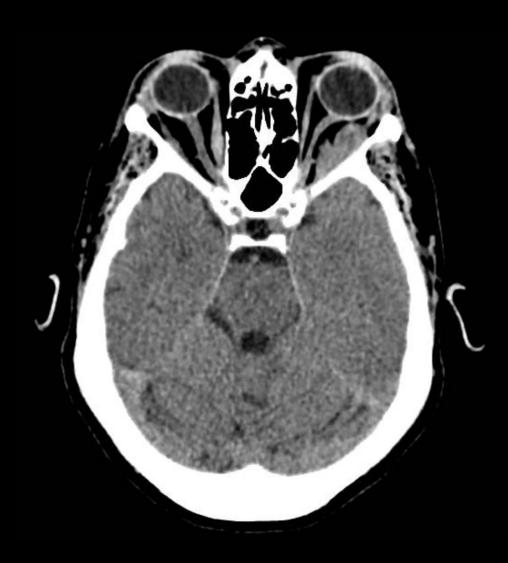
Columbia University Irving Medical Center

CIANS AND SURGEONS

Patient Presentation

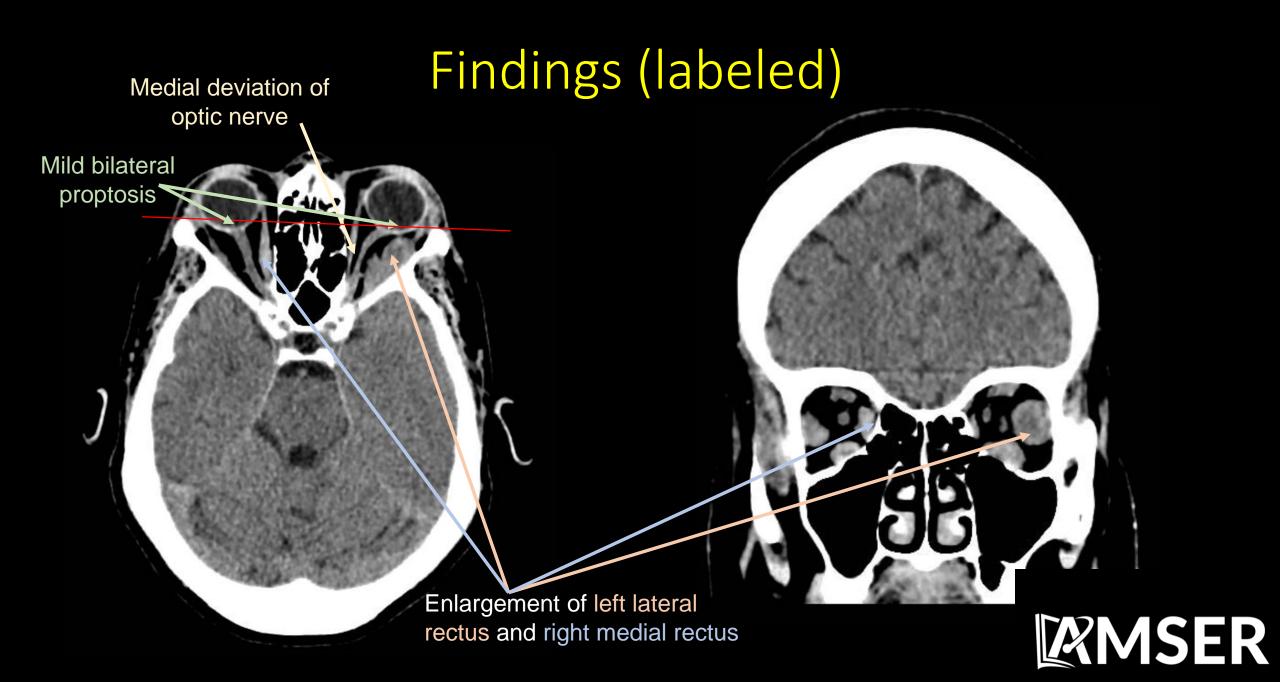
- 59-year-old woman with history of Afib, HTN, Heart Failure with reduced Ejection Fraction and Graves' Disease presents to the ED with a 6-month history of unilateral headache and eye pain.
- Vitals: BP 170/83, HR 103, Temp 36.6, RR 19, SpO2 97% on room air
- Physical Exam: PERRL, EOMI, mild bilateral ptosis, slight left sided supraorbital swelling without erythema, rash or bruising. No focal neurological deficits.
- Labs: CBC, BMP within normal limits, AST 53, ALT 33, AlkPhos 206, TSH <0.01, Free T4 1.69

What Imaging Should We Order?


Select the applicable ACR Appropriateness Criteria

Procedure	Appropriateness Category	RRL
MRI orbits without and with IV contrast	Usually Appropriate	0
CT orbits with IV contrast	Usually Appropriate	\$ \$ \$
CT orbits without IV contrast	May Be Appropriate	\$ \$ \$
CTA head and neck with IV contrast	May Be Appropriate	� � ♥
MRA head and neck without and with IV contrast	May Be Appropriate	0
MRI head without and with IV contrast	May Be Appropriate	0
MRI orbits without IV contrast	May Be Appropriate	0
MRA head and neck without IV contrast	May Be Appropriate (Disagreement)	0
MRI head without IV contrast	May Be Appropriate	0
Arteriography cervicocerebral	May Be Appropriate	\$ \$ \$
CT head with IV contrast	May Be Appropriate	\$ \$ \$
CT head without IV contrast	May Be Appropriate	\$ \$ \$
CT head without and with IV contrast	Usually Not Appropriate	� � ♥
CT orbits without and with IV contrast	Usually Not Appropriate	\$ \$ \$
X-ray orbit	Usually Not Appropriate	€

This imaging modality was ordered by the ER physician



Findings (unlabeled)

Final Dx:

Grave's Ophthalmopathy

Case Discussion

- Differential Diagnosis¹
 - Orbital Malignancy
 - Primary vs metastatic vs lymphoma
 - Orbital pseudotumor
 - Orbital myositis
 - Commonly secondary to sarcoidosis
 - Amyloidosis
 - Carotid cavernous fistula
 - Histiocytosis/Erdheim-Chester Disease

Case Discussion

- Epidemiology²
 - Ophthalmopathy is highly prevalent among patients with Graves' hyperthyroidism
 - Nearly half of Graves' hyperthyroidism patients report ocular symptoms
 - 70% of patients with Graves' hyperthyroidism have radiological evidence of ophthalmopathy (including subclinical)
- Pathophysiology^{2,3}
 - anti-TSH receptor antibodies bind TSH receptor expressed on adipocytes and fibroblasts, inducing increased synthesis of glycosaminoglycans leading to fluid accumulation/edema
 - Activated T-cells and macrophages further stimulate orbital fibroblasts and adipocytes, inducing adipogenesis and proliferation
 - Combination of edema, fibroblast proliferation and adipogenesis causes expansion of tissue within
 orbit and increases intraorbital pressure, thereby compressing extraocular muscles/orbital nerve
 and driving proptosis

Case Discussion

- Typical radiological findings⁴
 - Extraocular muscle thickening
 - Muscle involvement in order from most prevalent to least prevalent by mnemonic: IM SLOw⁵
 - Inferior rectus
 - Medial rectus
 - Superior rectus/Levator palpebrae superioris
 - Lateral rectus
 - Oblique
 - Proptosis
 - Increased in orbital fibroadipose tissue
 - Optic Nerve compression/deviation
- Clinical Pearl⁶
 - Patients with Graves' often (47%) present with at least one liver enzyme abnormality
 - Liver enzyme abnormalities may be attributable to Graves' rather than concurrent liver pathology
 - Most often abnormality in GGT (74.0%), followed by ALT (56.5%), AlkPhos (39.1%) and finally AST (29.0%)

References:

1. Nowak M, Nowak W, Marek B, et al. Differential diagnosis of thyroid orbitopathy - diseases mimicking the presentation or activity of thyroid orbitopathy. *Endokrynol Pol*. 2024;75(1):1-11. doi:10.5603/ep.98156

2. Bahn RS. Graves' ophthalmopathy. *N Engl J Med*. 2010;362(8):726-738. doi:10.1056/NEJMra0905750

3. Burch HB, Wartofsky L. Graves' ophthalmopathy: current concepts regarding pathogenesis and management. *Endocr Rev.* 1993;14(6):747-793. doi:10.1210/edrv-14-6-747

4. Luccas R, Riguetto CM, Alves M, Zantut-Wittmann DE, Reis F. Computed tomography and magnetic resonance imaging approaches to Graves' ophthalmopathy: a narrative review. *Front Endocrinol (Lausanne)*. 2024;14:1277961. Published 2024 Jan 8. doi:10.3389/fendo.2023.1277961

5. Lakerveld, M., van der Gijp, A. Orbital Muscle Enlargement: What if It's Not Graves' Disease?. *Curr Radiol Rep* **10**, 9–19 (2022). https://doi.org/10.1007/s40134-022-00392-y

6. Hsieh A, Adelstein S, McLennan SV, Williams PF, Chua EL, Twigg SM. Liver enzyme profile and progression in association with thyroid autoimmunity in Graves' disease. *Endocrinol Diabetes Metab*. 2019;2(4):e00086. Published 2019 Jul 15. doi:10.1002/edm2.86

