# AMSER Case of the Month August 2024

# 84-year-old male with abdominal bloating and nausea

Jacob Popple, MS
Drexel University School of Medicine
Allegheny Health Network

Matthew Hartman, MD

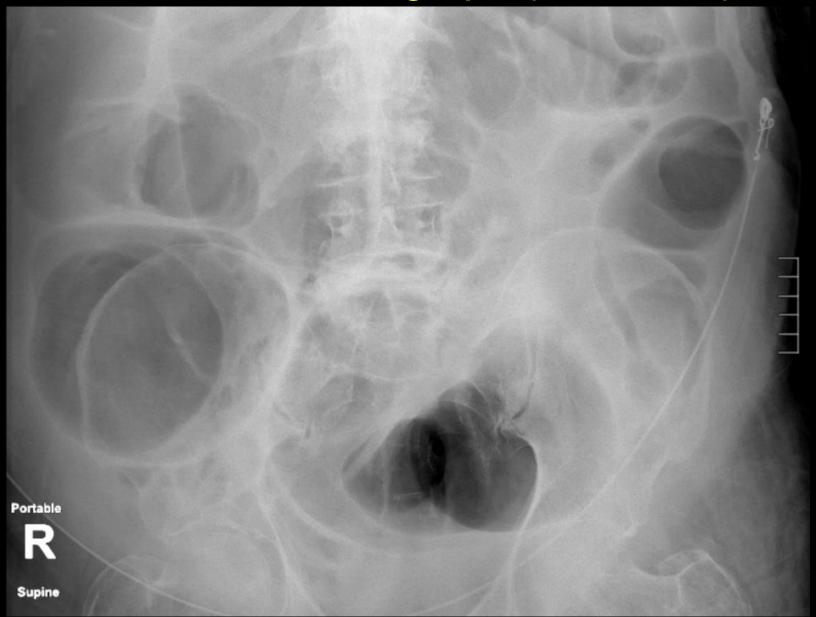
Diagnostic Radiology

Allegheny Health Network, Pittsburgh, PA








## Patient Presentation

- Patient initially presented to an outside hospital with fatigue, shortness of breath, and constipation. He subsequently developed A-fib with RVR and was transferred for higher level of care
- Upon transfer, patient was hypotensive and jaundiced with severe abdominal distension
- After further workup, patient was found to have hemolytic anemia secondary to babesia infection and was treated with atovaquone and azithromycin
- Patient continued to experience constipation and progressive abdominal distension
- PMHx: Gout; hypertension, hyperlipidemia, hypothyroidism, hemochromatosis, and recent Lyme disease

- Labs:
  - Na 140
  - K 2.7
  - Cl 117
  - Ca 6.1
  - Phos 2.1
- Abdominal Plain film was ordered to evaluate abdominal distension



# Abdominal Radiograph (unlabeled)





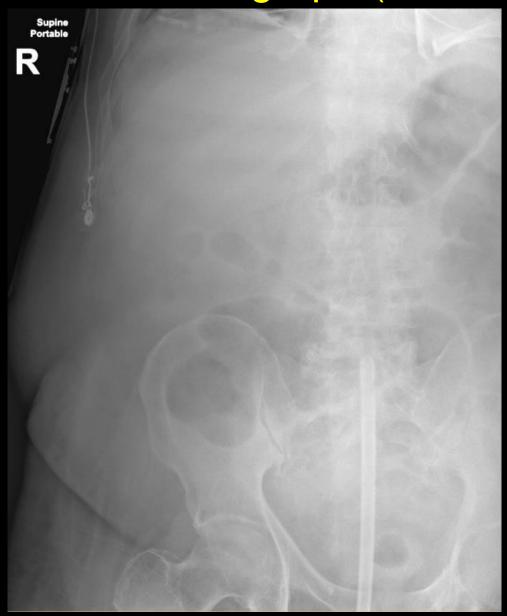
# Abdominal Radiograph (labeled)

cecum measuring Portable Supine

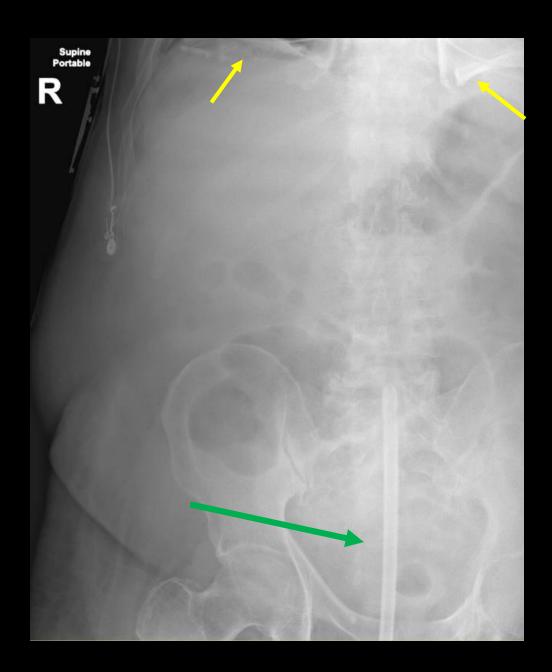
Dilation of the

10cm

Dilation of the entire large intestine with sparing of the small bowel




#### Clinical Course


- Abdominal Plain film was consistent with colonic Pseudoobstruction (Ogilvie Syndrome) and rectal tube was placed for decompression
- Abdominal Plain film was ordered for follow-up and evaluation of rectal tube placement



# Abdominal Radiograph (unlabeled)







However...opacities located on the diaphragmatic pleura

- Reduction in colonic distension
- Rectal tube in proper location

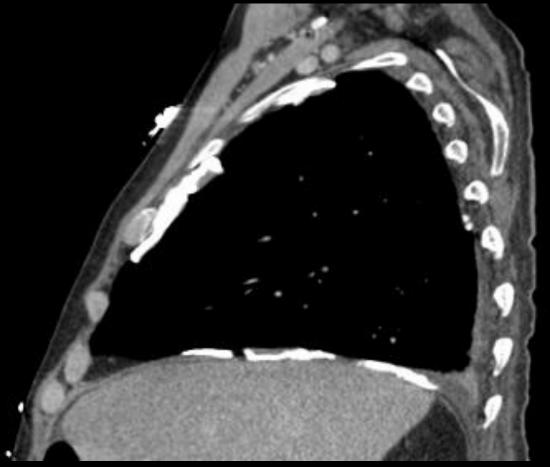


# What Additional Imaging Should We Order?



## Select the applicable ACR Appropriateness Criteria

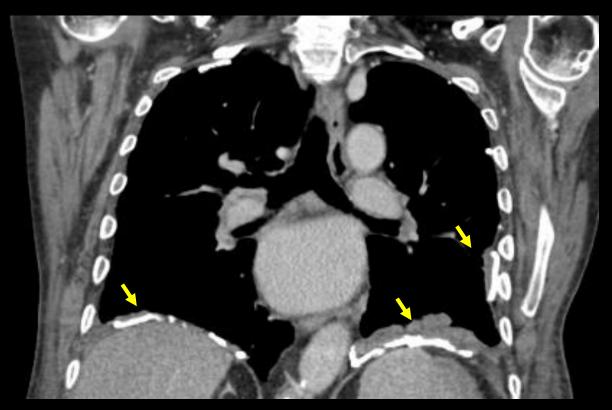
<u>Variant 3:</u> Occupational exposure, suspected interstitial lung disease based on radiography. Next imaging study.


| Procedure                                | Appropriateness Category | Relative Radiation Level |
|------------------------------------------|--------------------------|--------------------------|
| CT chest without IV contrast             | Usually Appropriate      | ❖❖❖                      |
| MRI chest without and with IV contrast   | Usually Not Appropriate  | О                        |
| MRI chest without IV contrast            | Usually Not Appropriate  | 0                        |
| CT chest with IV contrast                | Usually Not Appropriate  | ₩₩                       |
| CT chest without and with IV contrast    | Usually Not Appropriate  | <b>⊕⊕</b>                |
| FDG-PET/CT skull base to mid-thigh       | Usually Not Appropriate  | <b>₩₩</b>                |
| Image-guided transthoracic needle biopsy | Usually Not Appropriate  | Varies                   |

This imaging modality was ordered because patient was demonstrating signs of PE while hospitalized

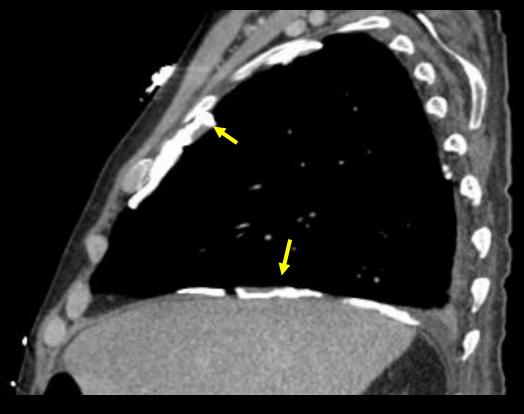


# Findings (unlabeled)









# Findings (labeled)

#### **Coronal CT with Contrast**



Bilateral Calcified pleural plaques with minor pleural effusions involving the diaphragmatic pleura and left costal margin

#### Sagittal CT with Contrast



Calcified pleural plaques involving the right diaphragmatic and anterior right costal margin



#### Final Dx:

Bilateral Pleural Calcifications with effusion



## Case Discussion

- Differential for pleural calcifications
  - Calcified pleural plaques from asbestos exposure
  - Hemothorax
  - Pyothorax/Empyema
  - TB Pleuritis
  - Extra-skeletal Osteosarcoma of pleura (very rare)
  - Previous radiation therapy
- Given radiological findings the patient most likely has calcified pleural plaques from previous asbestos exposure
  - Predominant involvement of diaphragmatic parietal pleura with sparing of apices and costophrenic angles



#### Case Discussion

- Epidemiology
  - Previous exposure to asbestos fibers used in building materials and heavy industry predisposes patients to asbestos-related diseases for up to several decades following exposure
- Types of asbestos related diseases
  - Benign
    - Asbestos-related exudative pleural effusions
    - Pleural plaques (calcification present in 5-15% of cases)
    - Asbestos-related diffuse pleural thickening
    - Asbestosis (A form of restrictive pulmonary fibrosis)
  - Malignant
    - Bronchogenic carcinoma (most common)
    - Mesothelioma (calcification present in 20% of cases)
- Further work-up and treatment
  - High resolution CT to further evaluate pleura and lung parenchyma
  - Thoracentesis to evaluate pleural effusions



#### Case Discussion

- Incidental findings are a common occurrence on radiological studies, appearing in over 10% of reports
  - These findings can be of a benign or malignant etiology
  - Around 65% of these findings are actionable
  - The ACR defines an actionable incidental finding as a mass or lesion on imaging of the head, neck, chest, abdomen, or pelvis not related to the reason for imaging that represents a finding for which non-emergent followup is recommended



#### References:

- Makeeva V, Schofield K, Davis M, Kadom N Managing Incidental Findings Appl Radiol. 2021;50(6):22-26
- Gaillard F, Anan R, Niknejad M, et al. Pleural plaque. Reference article, Radiopaedia.org (Accessed on 23 Jul 2024) <a href="https://doi.org/10.53347/rID-8735">https://doi.org/10.53347/rID-8735</a>
- Gaillard F, Ranchod A, Di Muzio B, et al. Mesothelioma. Reference article, Radiopaedia.org (Accessed on 23 Jul 2024) <a href="https://doi.org/10.53347/rlD-8712">https://doi.org/10.53347/rlD-8712</a>
- Weerakkody Y, Anan R, Silverstone L, et al. Pleural calcification. Reference article, Radiopaedia.org (Accessed on 23 Jul 2024) https://doi.org/10.53347/rID-8983

