# AMSER Rad Path Case of the Month:

#### 51 year old with abdominal distention

Macy Llewellyn MS-4, Lake Erie College of Osteopathic Medicine

Matthew Hartman MD, Allegheny Health Network—Diagnostic Radiology

Sharon Liang MD and Adam Kauffman DO PGY-2, Allegheny Health Network- Pathology

Christopher Morse MD, Allegheny Health Network- Gynecologic Oncology





#### Patient Presentation

- 51 year old G0P0 female with a history of endometriosis presenting with acute onset abdominal pain/distention.
- Past surgical history significant for supracervical hysterectomy with removal of a benign pelvic mass 11 years ago
- Recent colonoscopy 2 months ago reported normal
- Abdomen exam notable for diffuse distention and positive fluid wave.
   No rebound tenderness or guarding. Unable to appreciate any distinct abdominal or adnexal masses
- Nonsmoker and does not drink alcohol



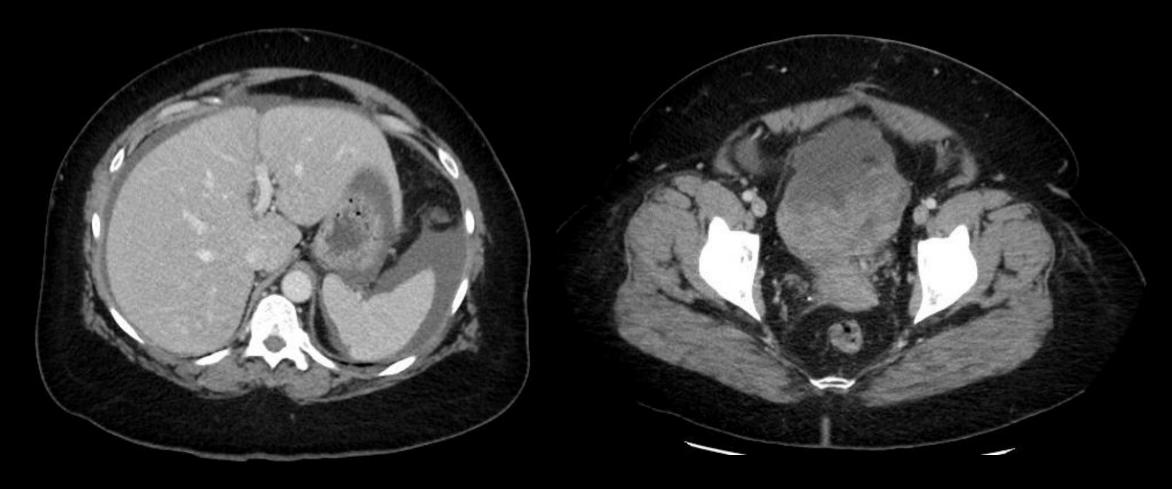
### Pertinent Labs

- WBC 14.3
- CEA 4.3
- CA-125 466



# What imaging should we order?




## ACR Appropriateness Criteria

Variant 4: Acute nonlocalized abdominal pain. Not otherwise specified. Initial imaging.

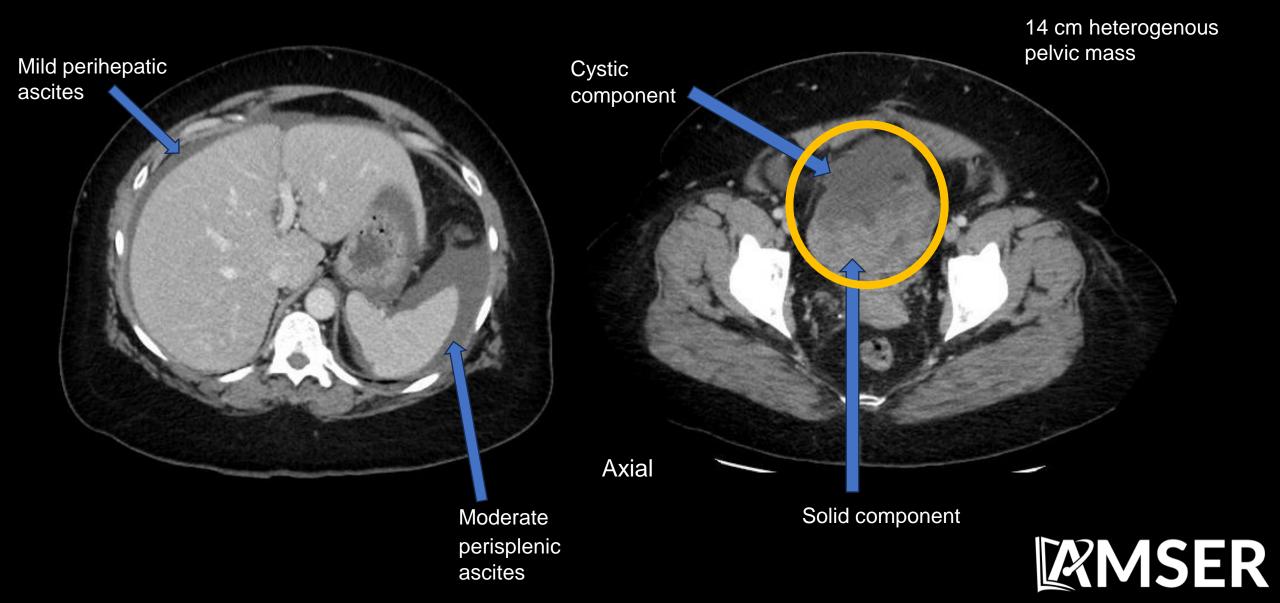
| Procedure                                                   | Appropriateness Category | Relative Radiation Level |
|-------------------------------------------------------------|--------------------------|--------------------------|
| CT abdomen and pelvis with IV contrast                      | Usually Appropriate      | <del>ଡ</del> ଡଡ          |
| CT abdomen and pelvis without IV contrast                   | Usually Appropriate      | <del>ବ</del> ଚ୍ଚତ        |
| MRI abdomen and pelvis without and with IV contrast         | Usually Appropriate      | 0                        |
| US abdomen                                                  | May Be Appropriate       | 0                        |
| MRI abdomen and pelvis without IV contrast                  | May Be Appropriate       | 0                        |
| CT abdomen and pelvis without and with IV contrast          | May Be Appropriate       | ***                      |
| Radiography abdomen                                         | May Be Appropriate       | <b>⊕⊕</b>                |
| FDG-PET/CT skull base to mid-thigh                          | Usually Not Appropriate  | ***                      |
| WBC scan abdomen and pelvis                                 | Usually Not Appropriate  | <del>ଡ</del> ଼େଜର        |
| Nuclear medicine scan gallbladder                           | Usually Not Appropriate  | <b>⊕⊕</b>                |
| Fluoroscopy upper GI series with small bowel follow-through | Usually Not Appropriate  | <del>ବବବ</del>           |
| Fluoroscopy contrast enema                                  | Usually Not Appropriate  | <b>⊕⊕⊕</b>               |

This imaging modality was ordered

# CT Abdomen/Pelvis with IV contrast (unlabeled)






# CT Abdomen/Pelvis with IV contrast (unlabeled)








# Radiology Images (labeled)

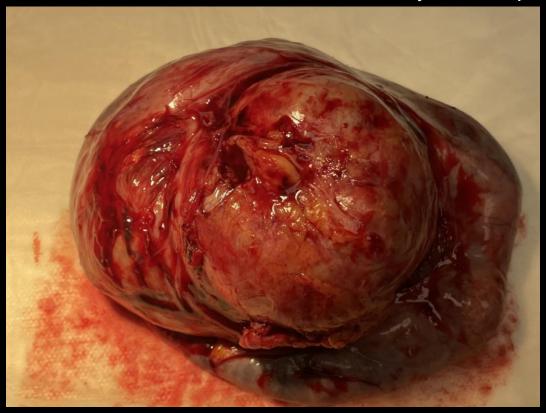


# Radiology Images (labeled)



14 cm heterogenous pelvic mass

MSER


### Differential Diagnosis based on Imaging

#### Ovarian cancer

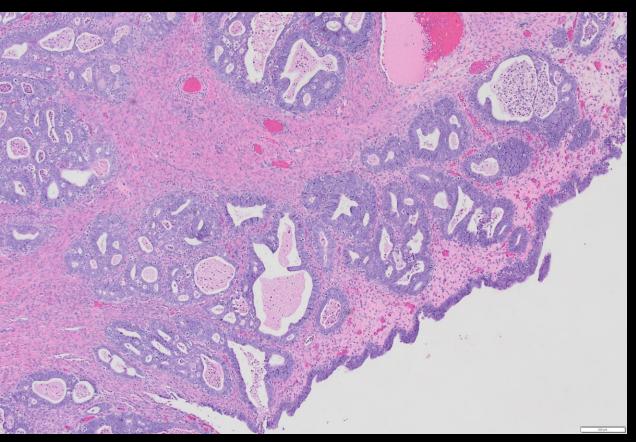
- While imaging appearance is often nonspecific, gross pathology appearance and tumor marker profiles along with image correlation can help determine specific subtype
- Extrauterine fibroid
- Lymphoma
  - Rarely can be localized to the ovary. Most common is diffuse large B-cell lymphoma
- Metastases
  - Colon, appendix, stomach, pancreas, breast, lung
  - Mets to the ovaries tend to be bilateral and smaller with peritoneal carcinomatosis often present

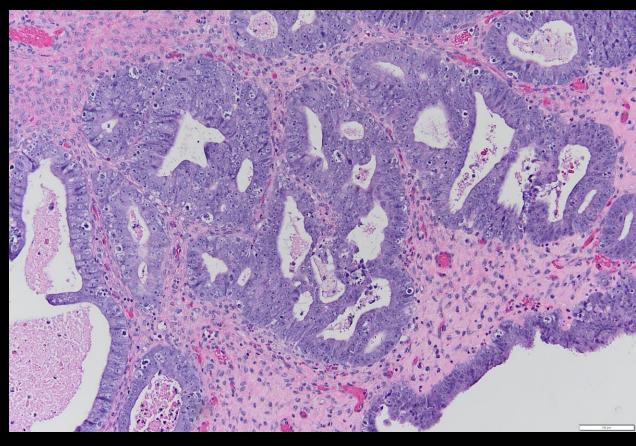
### Gross Path

14.0 x 10.5 x 7.5 cm mass solid and cystic components



The outer surface contains areas of hemorrhage. Approximately 200 cc of fluid was expressed from the cystic component





The inner lining solid components

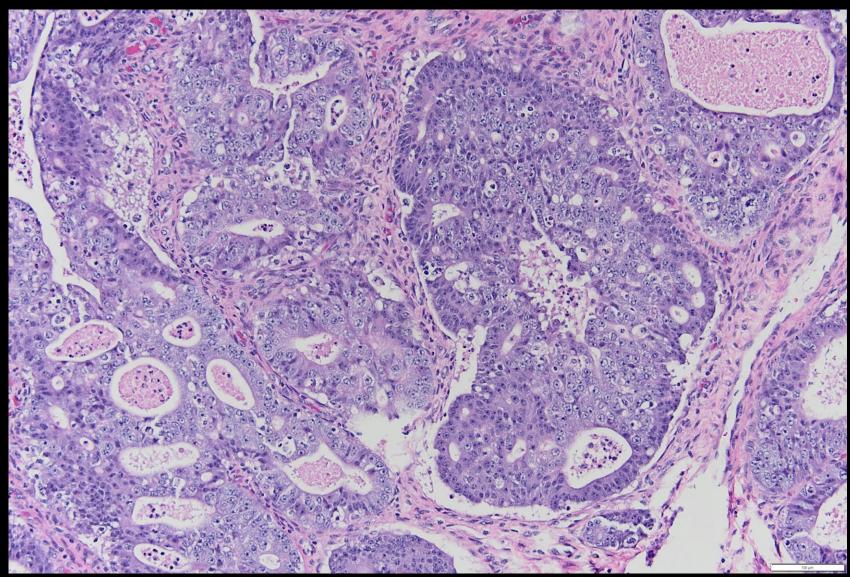


### Microscopic Path

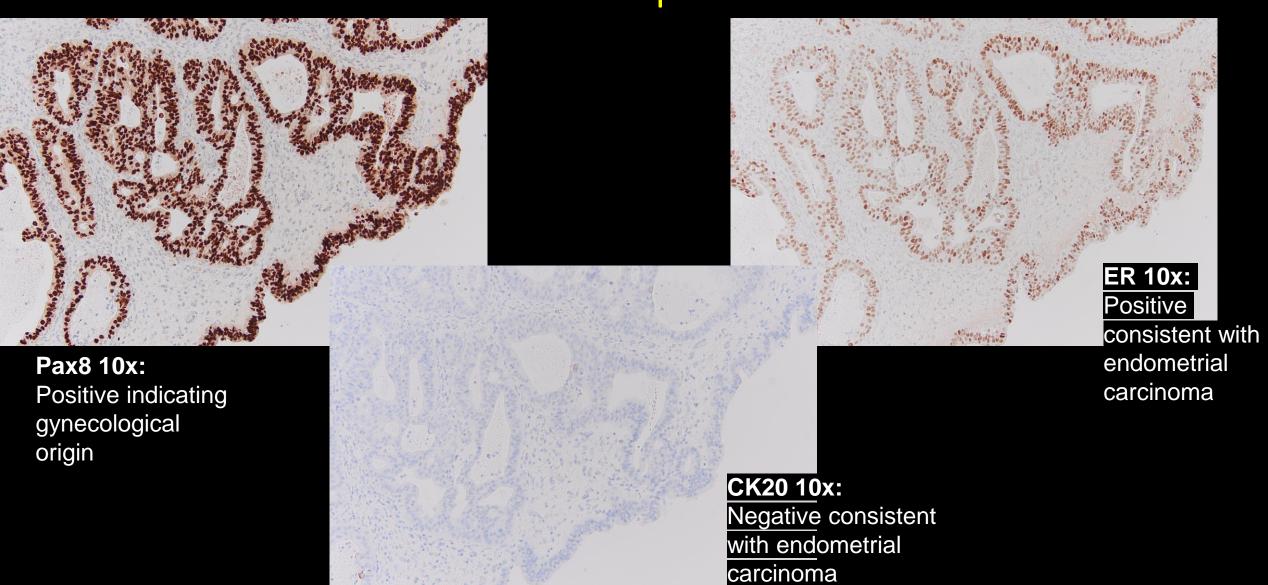
H&E 4x H&E 20x






Glandular adenocarcinoma with many areas of back to back glands with little intervening stroma

Well formed glands and mild to moderate pleomorphic cells consistent with endometrial carcinoma


# Microscopic Path

**H&E 10x:** Solid growth upgrading tumor to FIGO grade 2

-Grade 1 tumors exhibit ≤ 5% solid nonglandular, nonsquamous growth -Grade 2 tumors from 6% to 50% Grade 3 tumors > 50%



# Microscopic Path



#### Final Dx:

#### Endometrioid Adenocarcinoma FIGO Grade 2

\*Tumor likely arose in prior endometriosis



#### Case Discussion

- Endometriosis is a common benign disease defined by the presence of endometrial glands and stroma in ectopic locations
  - Prevalence of endometriosis is estimated at 10% in pre-menopausal women and 2-4% of post-menopausal women.
- Criteria for establishing malignant transformation in endometriosis includes:
  - 1. There must be a clear example of endometriosis in the vicinity of the tumor
  - 2. The histology of the cancer must be consistent with an endometrial origin
  - 3. No other primary site for the tumor can be found
- Malignant transformation has been observed only in around 1% of patients with endometriosis, occurring most commonly in the ovary
- Imaging features to suggest a borderline or malignant tumor include mural nodules, papillary projections, enhancing solid components, thickened walls, and vascularized large septa

#### Case Discussion

- Pathogenesis: Mutations in genes that encode for metabolic and detoxification enzymes, such as GALT, GSTM, and PTEN are thought to contribute to the progression from endometriosis to carcinoma
  - Also thought to be related to increased estrogen levels
- Endometriosis is associated with an increased risk specifically of the endometrioid and clear cell subtypes of ovarian cancer.
  - In one 15-year study, 39% of endometrioid carcinomas and 41% of clear cell carcinomas were found in association with endometriosis
- Immunophenotypes
  - Endometrioid carcinoma is positive for CK7, ER, PR, and CA 125 and negative for CK20
  - Endometrial, endocervical, breast, and lung adenocarcinomas are also positive for CK7 and negative for CK 20.
  - Colon carcinoma shows a reverse pattern.

#### Case Discussion

- FIGO Staging
  - Most recently updated in 2023 to better define the pathology and molecular findings as they relate to the type of endometrial carcinoma
    - Stage 1= limited to an endometrial polyp or confined+ low grade
    - Stage 2= invasion of the cervical stroma or any myometrial involvement
    - Stage 3= the tumor has spread locally or regionally
    - Stage 4= extrapelvic peritoneal metastasis, local invasion of the bladder or bowel, or distant metastases
  - Includes a tumor grading system that allows for easier clinical decision making
    - Histopathological findings are an important prognostic predictor
    - Non-aggressive histological types are low-grade (grades 1 and 2)
    - Aggressive histological types, mesonephric-like and gastrointestinal type mucinous carcinomas are grade 3
  - Prognosis is made on the basis of a combination of histologic subtype, tumor grade, operative extent of disease, and residual disease after surgical treatment.
    - Baseline CA-125 levels can be helpful for disease surveillance

#### References:

- Berek, J. S., Matias-Guiu, X., Creutzberg, C., Fotopoulou, C., Gaffney, D., Kehoe, S., Lindemann, K., Mutch, D., & Concin, N. (2023).
   FIGO staging of endometrial cancer: 2023. *International Journal of Gynecology & Obstetrics*, 162(2), 383-394.
   https://doi.org/10.1002/ijgo.14923
- Hermens, M., Van Altena, A. M., Velthuis, I., M., D. C., Bulten, J., Van Vliet, H. A., Siebers, A. G., & Bekkers, R. L. (2021). Endometrial Cancer Incidence in Endometriosis and Adenomyosis. *Cancers*, 13(18), 4592. <a href="https://doi.org/10.3390/cancers13184592">https://doi.org/10.3390/cancers13184592</a>
- Khush Mittal, Robert Soslow, W. G. McCluggage; Application of Immunohistochemistry to Gynecologic Pathology. *Arch Pathol Lab Med* 1 March 2008; 132 (3): 402–423. <a href="https://doi.org/10.5858/2008-132-402-AOITGP">https://doi.org/10.5858/2008-132-402-AOITGP</a>
- SWIERSZ, L. M. (2002). Role of Endometriosis in Cancer and Tumor Development. *Annals of the New York Academy of Sciences*, 955(1), 281-292. https://doi.org/10.1111/j.1749-6632.2002.tb02788
- Taylor, EC., Irshaid, L., Mathur, M. (2021). Multimodality Imaging Approach to Ovarian Neoplasms with Pathologic Correlation. *Radiographics*, 41:289-315. https://doi.org/10.1148/rg.2021200086
- Valenzuela, P., Ramos, P., Redondo, S., Cabrera, Y., Alvarez, I., & Ruiz, A. (2007). Endometrioid adenocarcinoma of the ovary and endometriosis. *European Journal of Obstetrics & Gynecology and Reproductive Biology*, 134(1), 83-86.
   https://doi.org/10.1016/j.ejogrb.2006.06.008