AMSER Case of the Month July 2024

Patient with Aggregatibacter infective endocarditis with emboli to the brain presents for follow-up imaging.

Xin He, University of Virginia School of Medicine Dr. Tanvir Rizvi, University of Virginia School of Medicine

Initial Patient Presentation

HPI: 64-year-old woman with no significant PMH presents with 3 months of gradual right, then left vision loss.

Physical Exam: Bilateral panuveitis, no other focal deficits

Inpatient work-up reveals <u>Aggregatibacter infectious endocarditis</u> c/b <u>multiple ring enhancing lesions</u> due to septic emboli to the brain

Discharged on 8-week course of Metronidazole and Ceftriaxone

Patient Presentation at 8-week Follow Up

HPI: Following up to assess symptom/imaging progression

- Vision symptoms stable and feels better overall. Patient reports worsening ataxia; secondary fall 4 weeks post discharge. Now requires wheelchair.
- Denies headaches, fevers, chills, tingling or numbness, and incontinence
- Medications:
 - IV Ceftriaxone 2g BID
 - PO Metronidazole 500mg TID

What Imaging Should We Order?

Select the applicable ACR Appropriateness Criteria

Clinical Condition: Focal Neurologic Deficit

<u>Variant 4:</u> Single or multiple focal neurologic deficits, subacute onset, progressive or fluctuating.

Radiologic Procedure	Rating	Comments	RRL*
MRI head without and with contrast	8	See statement regarding contrast in text under "Anticipated Exceptions."	0
MRI head without contrast	8		0
CT head without contrast	7	Acute screening.	***
MRA head and neck without and with contrast	6	See statement regarding contrast in text under "Anticipated Exceptions."	0
MRA head and neck without contrast	6		О
CT head without and with contrast	6	If MRI is unavailable or contraindicated. Consider CT perfusion.	***
CTA head and neck with contrast	6	For suspected vascular abnormality.	***
CT head perfusion with contrast	5		***
MRI head perfusion with contrast	5	See statement regarding contrast in text under "Anticipated Exceptions."	0
CT head with contrast	4		***
MR spectroscopy head without contrast	4	For selected cases.	О
MRI functional (fMRI) head without contrast	3		0
Tc-99m HMPAO SPECT head	3	For problem solving in HIV/AIDS.	***
Thallium-201 SPECT head	3	For problem solving in HIV/AIDS.	***
Arteriography cervicocerebral	3	For problem solving.	***
FDG-PET/CT head	2		***

Findings (unlabeled)

Findings (labeled)

Hyperintensities in bilateral dorsal midbrain

Hyperintensities in bilateral dentate nuclei

Findings (unlabeled)

Findings (labeled)

Hyperintensities in bilateral dorsal medulla (vestibular nuclei)

Hyperintensity in splenium of corpus callosum

Final Dx:

Metronidazole-Induced Neurotoxicity (MIN)

Case Discussion: Metronidazole-Induced Neurotoxicity

- Metronidazole is a commonly used antibiotic effective against protozoa and anaerobic bacteria.
- Generally well-tolerated in short courses, but risk of neurotoxicity suggested to increase with higher doses and longer duration of therapy.
- The current pathophysiology behind MIN is unclear, but proposed mechanisms include generation of free-radicals and causing vascular spasms that lead to localized ischemia.

Case Discussion: Metronidazole-Induced Neurotoxicity

• Diagnosis:

- Diagnosis of exclusion
- Should suspect in patients on long durations of high-dose metronidazole who present with neurologic dysfunction
 - Most common symptoms: cerebellar dysfunction (dysarthria, ataxia, dysmetria), altered mental status, and seizures
- MRI T2W/FLAIR hyperintensities in specific regions can aid MIN diagnosis
 - In decreasing order of frequency, cerebellar dentate nucleus, midbrain (including periaqueductal region), dorsal pons, medulla, inferior colliculus, subcortical white matter, basal ganglia, thalamus, and cerebellar peduncles

Case Discussion: Metronidazole-Induced Neurotoxicity

- Treatment: Discontinue metronidazole
- Prognosis:
 - Majority of cases either improve (29%) or have complete resolution of symptoms (65%)
 - 3% of patients experience permanent cognitive impairment
 - Patients with cerebellar dysfunction less likely to have complete resolution than those with mental status changes or seizures

References:

- Buckens S, Sharma R, Carroll D, et al. Metronidazole central nervous system toxicity. Reference article, Radiopaedia.org (Accessed on 19 May 2024) https://doi.org/10.53347/rID-39532
- Kuriyama A, Jackson JL, Doi A, Kamiya T. Metronidazole-induced central nervous system toxicity: a systematic review. *Clin Neuropharmacol*. 2011;34(6):241-247. doi:10.1097/WNF.0b013e3182334b35
- Patel L, Batchala P, Almardawi R, Morales R, Raghavan P. Acute metronidazole-induced neurotoxicity: an update on MRI findings. Clin Radiol. 2020;75(3):202-208. doi:10.1016/j.crad.2019.11.002
- Roy U, Panwar A, Pandit A, Das SK, Joshi B. Clinical and Neuroradiological Spectrum of Metronidazole Induced Encephalopathy: Our Experience and the Review of Literature. *J Clin Diagn Res*. 2016;10(6):OE01-OE9. doi:10.7860/JCDR/2016/19032.8054

