AMSER Case of the Month June 2024

54-year-old presents with worsening leftsided paresthesias and numbness

Jessica Vankawala (MS-2), Cooper Medical School of Rowan University Edwin Pagan, MD (PGY-3), Cooper University Healthcare Minakshi Ramchand, MD, Cooper University Healthcare

Patient Presentation

- HPI: 54-year-old female presented to the ED for evaluation of progressively worsening left-sided paresthesias and numbness over the past 3 months. Affected area included the entire left upper extremity from the level of the axilla to the digits.
- PMHx: Herpes zoster 3 months prior; developed a painful, erythematous maculopapular rash on the left side of her back extending to the left breast. Treated with valacyclovir and gabapentin.

Patient Presentation

- Physical Exam: LUE showed decreased sensation to light touch, increased pinprick sense circumferentially from the axilla to fingers.
 CN V showed decreased sensation to light touch, temperature, and vibratory sense on left face with splitting of the midline.
- ROS: (+) LUE weakness, LUE numbness, LLE numbness, urinary incontinence, intermittent left occipital headaches
 - (–) bowel incontinence, photophobia, nausea, dysarthria, dysphagia, vision changes

Pertinent Labs

- CSF: elevated leukocytes, normal protein levels
- **B12**: elevated
- AQP4 antibody titer: negative

What Imaging Should We Order?

ACR Appropriateness Criteria

Variant 2: Chronic or progressive myelopathy. Initial imaging.			
Procedure	Appropriateness Category	Relative Radiation Level	This imaging
MRI spine area of interest without and with IV contrast	Usually Appropriate	0	modality was
MRI spine area of interest without IV contrast	Usually Appropriate	0	ordered
CT myelography spine area of interest	May Be Appropriate	Varies	
CT spine area of interest with IV contrast	May Be Appropriate	Varies	
CT spine area of interest without IV contrast	May Be Appropriate	Varies	
Arteriography spine area of interest	Usually Not Appropriate	Varies	
Radiography spine area of interest	Usually Not Appropriate	Varies	
MRA spine area of interest with IV contrast	Usually Not Appropriate	0	
MRA spine area of interest without and with IV contrast	Usually Not Appropriate	0	
MRA spine area of interest without IV contrast	Usually Not Appropriate	0	
MRI spine area of interest with IV contrast	Usually Not Appropriate	0	
CT spine area of interest without and with IV contrast	Usually Not Appropriate	Varies	
CTA spine area of interest with IV contrast	Usually Not Appropriate	Varies	

Findings (unlabeled)

Findings (unlabeled)

Findings (unlabeled)

Findings (labeled)

Sagittal T2, STIR, T1, and T1 post-contrast imaging sequences of the cervical spine showing a T2/STIR hyperintense lesion (red arrows) in the upper cervical spine at the level of C2 with mild cord enlargement (red arrow) on T1 and enhancement (red arrow) on post-contrast images.

RMSER

Findings (labeled)

Axial T2, STIR, and T1 post-contrast imaging sequences of the cervical at the level of the dens and C1 lateral masses showing a T2/STIR hyperintense lesion (red arrows) with enhancement (red arrow) on post-contrast images.

Findings (labeled)

Coronal T2 imaging sequence of the cervical spine showing a T2 hyperintense lesion (red arrow) in the upper cervical spine at the level of C2.

Final Dx:

Varicella Zoster-Induced Transverse Myelitis

Transverse Myelitis

MRI

- Variable appearance
 - 40% of clinical transverse myelitis have no MRI abnormalities
- Signal characteristics:
 - T1: Iso-/hypo-intense
 - T2: Focal hyperintense
 - STIR: Hyperintense
 - Post-contrast: Variable (none, patchy, diffuse, peripheral)
- Lesion characteristics
 - Variable size, usually occupy 3-4 spinal segments and takes up ²/₃ of the cross-sectional area
 - Variable cord enlargement
- Cord enlargement and enhancement can resolve with clinical improvement

Case Discussion

Epidemiology of Varicella Zoster Virus (VZV)

- Over 300,000 cases of herpes zoster (shingles) in the US per year
- Incidence is 8-10x higher in patients over 60 years of age than in younger patients
- Varicella-related myelopathy and myelitis is reported in only 0.3% of VZV patients

Case Discussion

Typical Presentation

- Onset of myelitis symptoms ranges from acute to subacute (up to 2 months) following herpes zoster rash eruption.
- More frequently seen in immunocompromised patients; immunocompetent patients tend to have better recovery.
- Most commonly involves thoracic dermatomes. Presents with hypoesthesia, paraparesis, and neuropathic pain on the ipsilateral side.
- Lower motor dysfunction, especially sphincter dysfunction, urinary incontinence, and impaired ambulatory function are common sequelae.

Case Discussion

Indicated Treatment

- Antiviral + glucocorticoid
 - Acyclovir/valacyclovir and tapered methylprednisolone given simultaneously
 - Gabapentin for neuropathic pain

This patient was treated with valacyclovir, gabapentin, and high-dose methylprednisolone IV inpatient, and was given prednisone PO at discharge to take at home.

References

- 1. Ross JS. Acute Transverse Myelopathy | STATdx. Accessed April 13, 2024. https://app.statdx.com/document/v2/ebe92a21-af49-4474-9017-7e8844c970a1#
- Agarwal V, Shah LM, Parsons MS, et al. ACR Appropriateness Criteria[®] Myelopathy: 2021 Update. Journal of the American College of Radiology. 2021;18(5):S73-S82. doi:10.1016/J.JACR.2021.01.020
- Gilden DH, Kleinschmidt-DeMasters BK, LaGuardia JJ, Mahalingam R, Cohrs RJ. Neurologic Complications of the Reactivation of Varicella–Zoster Virus. New England Journal of Medicine. 2000;342(9):635-645. doi:10.1056/NEJM200003023420906/ASSET/802D167E-11BD-4525-B4DE-B43783C82289/ASSETS/IMAGES/LARGE/NEJM200003023420906_F7.JPG
- 4. Sebastian AP, Basu A, Mitta N, Benjamin D. Transverse myelitis caused by varicella-zoster. BMJ Case Reports. 2021;14(8):238078. doi:10.1136/BCR-2020-238078
- Kitley J, Leite MI, Küker W, et al. Longitudinally Extensive Transverse Myelitis With and Without Aquaporin 4 Antibodies. JAMA Neurology. 2013;70(11):1375-1381. doi:10.1001/JAMANEUROL.2013.3890

