AMSER Case of the Month September 2024

74 yo female s/p TNK treatment for ischemic cerebral infarct with acute encephalopathy and worsening anemia

Mitchell Hester, OMS-IV, Touro University Nevada COM Michael Goldenberg, MD, R2/PGY-3, Allegheny Health Network Matthew Hartman, MD, Allegheny Health Network

Osteopathic Medicine

Patient History

- PMHx included atrial fibrillation, CAD s/p CABG, diabetes mellitus, hypothyroidism, hypertension, hyperlipidemia, chronic kidney disease, prior PCA stroke
- PSHx: CABG
- Home meds: amlodipine 10 mg, aspirin 81 mg, atorvastatin 40 mg, isosorbide mononitrate 60 mg, levetiracetam 500 mg, levothyroxine 125 mg, losartan 100 mg, nitroglycerin 0.4 mg, omeprazole 40 mg

Patient Presentation

- 74 yo female originally presenting with neurologic deficits
- Evaluation and imaging for suspected stroke revealed acute ischemic infarct in R lateral frontal lobe
- Pt met the criteria for treatment with TNK and received TNK treatment with subsequent anti-coagulation with heparin and aspirin
- On hospital day 7, a rapid response was called for acute encephalopathy, fixed dilated pupils, and systolic BP in the 60s
- The nurse reported inadequate physical exam d/t the pt not being able to follow commands

Pertinent Labs

• CBC revealed Hgb 6.2, decreased from 9.4 earlier the same day

What Imaging Should We Order?

Imaging

• CT Head was negative for new brain pathology

ACR Appropriateness Criteria for Suspected RP Bleed

American College of Radiology ACR Appropriateness Criteria[®] Suspected Retroperitoneal Bleed

Variant 1: Clinically suspected retroperitoneal bleed. Initial imaging.

Procedure	Appropriateness Category	Relative Radiation Level
CT abdomen and pelvis with IV contrast	Usually Appropriate	€€€
CT abdomen and pelvis without and with IV contrast	Usually Appropriate	₸₽₽₽₽
CTA abdomen and pelvis with IV contrast	Usually Appropriate	₢₢₢₢₢
Aortography abdomen and pelvis	May Be Appropriate (Disagreement)	ଡ଼ଡ଼ଡ଼ଡ଼
CT abdomen and pelvis without IV contrast	May Be Appropriate	
US abdomen and pelvis	Usually Not Appropriate	0
Radiography abdomen and pelvis	Usually Not Appropriate	€€€
MRA abdomen and pelvis with IV contrast	Usually Not Appropriate	0
MRA abdomen and pelvis without and with IV contrast	Usually Not Appropriate	0
MRA abdomen and pelvis without IV contrast	Usually Not Appropriate	0
MRI abdomen and pelvis without and with IV contrast	Usually Not Appropriate	0
MRI abdomen and pelvis without IV contrast	Usually Not Appropriate	0
RBC scan abdomen and pelvis	Usually Not Appropriate	€€€

[2]

New 2021

This imaging modality was ordered

Findings (unlabeled)

CT Abdomen/Pelvis non-contrast, Axial

CT Abdomen/Pelvis non-contrast, Sagittal

Findings (labeled)

<u>Hounsfield units</u> -upper segment: 15.8 HU -lower segment: 59.1 HU

Localized collection of fluid with fluid-fluid level in the retroperitoneal space of the R pelvis

Hematocrit effect (visualized by red line)

Final Dx:

Spontaneous Retroperitoneal Hematoma

- Epidemiology / Risk Factors / Pathogenesis
 - Causes / Risk factors
 - Trauma (most common)
 - latrogenic (particularly resulting from IR and catheterization lab procedures)
 - Extensive anticoagulation (likely the cause in this patient)
 - Ruptured aortic aneurysm
 - Ruptured renal aneurysm
 - Acute pancreatitis
 - Malignancy
 - Pathogenesis
 - Accumulation of blood in the retroperitoneal space due to damage to vessels or retroperitoneal organs (e.g., kidneys, pancreas, distal duodenum)
 - Mortality
 - A study from 2011 reported mortality of 5.6% at 7 days, 19.1% at 6 months^[3]

RMSER

- Clinical Features
 - May present asymptomatically until there is significant blood loss
 - Abdominal pain
 - Flank pain
 - Upper leg pain
 - Hematuria
 - Shock
 - Hypotension

- Diagnosis and Imaging
 - Blood collection may compress femoral nerve
 - Can manifest as weakness in knee extension and/or hip flexion, and diminished patellar reflex
 - Labs: order CBC
 - Preferred imaging: CT abdomen pelvis without contrast
 - Can use contrast if there is concern for active bleeding/need for localization for intervention
 - Hematocrit effect
 - Fluid-fluid level resulting from layering effect of heavier cellular components of blood settling below plasma and fluid components
 - Most frequently seen in the setting of anticoagulation or coagulopathy

- Management of retroperitoneal bleeding
 - Depends on the etiology
 - Traumatic etiology: laparotomy
 - Non-traumatic etiology (spontaneous retroperitoneal hematoma)
 - Specific treatment will depend on location and extent of bleeding
 - Discontinue and reverse anticoagulation (if applicable)
 - Fluid resuscitation if the pt is hemodynamically unstable
 - Blood transfusion indicated in pts with anemia

Management of retroperitoneal bleeding

- Research
 - Postprocedural pts with retroperitoneal hematoma do well with blood transfusion alone
 - One study from 2011 reports 24.7% of pts undergo embolization procedure and 6.7% of pts undergo surgical procedure^[3]
 - Another study from 2019 reports 16% of pts undergo invasive intervention^[1]
 - 40% of pts require ICU management^[3]
 - Spontaneous retroperitoneal hematoma is associated with high mortality but is typically not the direct cause of death^[1]

- Prevention
 - Given trauma is the most common etiology, prevention is focused on accidental injury prevention through enhanced health policy and public health services
 - Prevention of non-traumatic cases is focused on proper procedural technique, adequate monitoring of vitals in high-risk pts, and consistent physical exams in high-risk pts

^[1] Baekgaard JS, Eskesen TG, Lee JM, et al. Spontaneous Retroperitoneal and Rectus Sheath Hemorrhage-Management, Risk Factors and Outcomes. *World J Surg*. 2019;43(8):1890-1897.

^[2] Expert Panel on Vascular Imaging, Verma N, Steigner ML, et al. ACR Appropriateness Criteria[®] Suspected Retroperitoneal Bleed. *J Am Coll Radiol*. 2021;18(11S):S482-S487.

^[3]Sunga KL, Bellolio MF, Gilmore RM, Cabrera D. Spontaneous retroperitoneal hematoma: etiology, characteristics, management, and outcome. *J Emerg Med*. 2012;43(2):e157-e161.

