AMSER Case of the Month October 2025

63-year-old woman with history of recurrent Proteus UTI presenting with flank pain and fatigue

Griffen Kingkiner, MS4

Katherine (Kate) Klein, MD, Department of Radiology University of Michigan Hospital

Patient Presentation

- HPI: A 63-year-old woman with recurrent acute right flank pain and fatigue
- PMH: Recurrent UTIs, nephrolithiasis status post laser lithotripsy
- Social history: Never smoked, does not drink alcohol or use drugs
- PSH: Appendectomy
- Medications: Metoprolol, Atorvastatin
- Family history non-contributory

Pertinent Labs

- Complete blood count: Hemoglobin of 9.9, WBC count of 21.4
- Basic metabolic panel: BUN of 32 and creatinine of 1.86 (eGFR = 28)
- Urinalysis: Positive leukocyte esterase, moderate blood
- Urine culture: Proteus mirabilis

What Imaging Should We Order?

Select the applicable ACR Appropriateness Criteria

<u>Variant 1:</u>
Acute onset flank pain. Suspicion of stone disease. No history or remote history of stone disease. Initial imaging.

Procedure	Appropriateness Category	Relative Radiation Level
CT abdomen and pelvis without IV contrast	Usually Appropriate	���
US color Doppler kidneys and bladder retroperitoneal	May Be Appropriate (Disagreement)	0
US kidneys and bladder retroperitoneal	May Be Appropriate (Disagreement)	0
Radiography abdomen and pelvis	May Be Appropriate	⊕ ⊕
Radiography intravenous urography	Usually Not Appropriate	⊕⊕⊕
MRI abdomen and pelvis without and with IV contrast	Usually Not Appropriate	0
MRI abdomen and pelvis without IV contrast	Usually Not Appropriate	0
MRU without and with IV contrast	Usually Not Appropriate	0
MRU without IV contrast	Usually Not Appropriate	0
CT abdomen and pelvis with IV contrast	Usually Not Appropriate	⊕⊕⊕
CT abdomen and pelvis without and with IV contrast	Usually Not Appropriate	ᢒᢒᢒᢒ
CTU without and with IV contrast	Usually Not Appropriate	*****

This imaging modality was ordered by the ER physician

Tc-99m MAG3 dynamic renal scan

About 86% of the effective renal plasma flow is to the left kidney and about 14% is to the right

Left

Findings post-procedure

Final Dx:

Xanthogranulomatous Pyelonephritis (XGP), stage 2

Typical findings on CT

- Staghorn calculus visible in around 80% of cases
- The calyces are typically dilated while the pelvis is contracted
 - This gives the kidney the bear's paw appearance
- In about 10% of cases, disease can be focal or segmental, affecting only a portion of the kidney or only the cortex
- Diffuse cases can be staged based on involvement of regional tissue
 - Stage 1 involves only renal parenchyma
 - Stage 2 involves perinephric fat
 - Stage 3 involves pararenal space, the retroperitoneum, or adjacent organs

Signs on history, physical, and labs

- Dull and persistent flank pain, malaise, fever, and anorexia/weight loss
- May not have lower urinary tract symptoms
- Elevated WBC count, anemia, elevated ESR and CRP
- Urine culture may be negative

Etiology

- Caused by chronic UTI and renal obstruction. About 80% of cases have a staghorn calculus. Most common pathogens are Proteus mirabilis and Escherichia coli.
- Histology shows granulomatous inflammation and lipid-laden macrophages

Complications

- Renal function is typically severely impaired by the time the diagnosis is made
- If untreated, can spread extrarenally to the retroperitoneum or local organs and cause fistulae, deep sinuses, or abscesses

Treatment

- Treated initially with antibiotics and percutaneous drainage
- Most often treated with radical nephrectomy following clinical improvement
- Further surgery to treat fistulae and/or sinuses as needed
- In the case of localized disease, may be treated with partial nephrectomy or nonsurgically

Prognosis

- Surgery prevents recurrence and improves long-term prognosis
- However, surgery is often technically difficult with a complication rate of about 22% and a mortality rate around 5%
- Bilateral cases are often fatal

Differential diagnosis

- The bear paw sign is moderately specific for XGP
- In focal cases, it can be difficult to distinguish from primary renal malignancy
- Other considerations include malakoplakia, renal tuberculosis, or complicated cyst
- Histology may be helpful when the diagnosis is unclear

References:

- 1. Jha SK, Leslie SW, Aeddula NR. Xanthogranulomatous pyelonephritis. In: *StatPearls*. StatPearls Publishing; 2025. Accessed June 6, 2025. http://www.ncbi.nlm.nih.gov/books/NBK557399/
- 2. Li L, Parwani AV. Xanthogranulomatous pyelonephritis. *Archives of Pathology & Laboratory Medicine*. 2011;135(5):671-674. doi:10.5858/2009-0769-RSR.1
- 3. Korkes F, Favoretto RL, Bróglio M, Silva CA, Castro MG, Perez MDC. Xanthogranulomatous pyelonephritis: clinical experience with 41 cases. *Urology*. 2008;71(2):178-180. doi:10.1016/j.urology.2007.09.026
- 4. Bolger MP, Hennebry J, Byrne C, et al. Xanthogranulomatous pyelonephritis: a narrative review with current perspectives on diagnostic imaging and management, including interventional radiology techniques. *IJNRD*. 2021;Volume 14:359-369. doi:10.2147/IJNRD.S236552
- 5. Neel R, Justin B, Leslie Selden L, Joel V, Ramakrishna Venkatesh R, Robert S F. Complications of laparoscopic versus open nephrectomy for xanthogranulomatous pyelonephritis: a contemporary series. *Int Complic.* 2020;6(1). doi:10.23937/2469-5742/1510071