AMSER Case of the Month October 2025

36-year-old female with right lower quadrant abdominal pain

Gabriel Hanson, M2
Matthew Kruse, M.D.
Creighton University School of Medicine

Patient Presentation

HPI: A 36-year-old female presents to the ED with a chief complaint of severe right sided abdominal pain that is sharp in nature, constant, and radiating to the groin and back. Patient reports associated nausea.

PMH: Tuberous sclerosis

PSH: Cholecystectomy, Hysterectomy

Physical Exam: Right lower quadrant is tender to palpation

Pertinent Labs

- CBC: WBC 17.3, HBG 11.8, ANC 12.8
- UA: Appearance slightly cloudy, Blood moderate, Protein 30, RBC – 10-20, Casts Granular – 0-2, Amorphous – 2+, Squam Epithelial Cells – 5-10
- CMP: Glucose 205, Creatinine 1.23, Chloride 113, CO2 19.0,
 GFR 56
- Lactic Acid, Venous 3.2

What Imaging Should We Order?

ACR Appropriateness Criteria

Variant 1: Right lower quadrant pain. Initial imaging.

Procedure		Appropriateness Category	Relative Radiation Level
CT abdomen and pelvis with IV contrast		Usually Appropriate	⊕⊕⊕
US abdomen		May Be Appropriate	0
US pelvis		May Be Appropriate	0
MRI abdomen and pelvis without and with IV contrast		May Be Appropriate	0
MRI abdomen and pelvis without IV contrast		May Be Appropriate	0
CT abdomen and pelvis without IV contrast		May Be Appropriate	⊕⊕⊕
Radiography abdomen		Usually Not Appropriate	⊕⊕
Fluoroscopy contrast enema		Usually Not Appropriate	⊕⊕⊕
CT abdomen and pelvis without and with IV contrast		Usually Not Appropriate	⊕⊕⊕⊕
WBC scan abdomen and pelvis		Usually Not Appropriate	⊕⊕⊕⊕

This imaging modality was ordered by the ER physician

CT with Contrast Findings

CT with Contrast Findings (Labeled)

- Acute perirenal hemorrhage (>)from ruptured right angiomyolipoma

- Multiple bilateral fat-containing renal masses compatible with angiomyolipomas (*)

Previous MRI Abdomen with and without contrast

Multiple bilateral fat-containing renal masses compatible with angiomyolipomas (*)

Renal cysts (→)

Final Dx:

Ruptured right angiomyolipoma with acute perirenal hemorrhage in a patient with tuberous sclerosis

Tuberous Sclerosis (TSC):

- Rare AD neurocutaneous disorder due to mutations in the TSC1 or TSC2 tumor suppressor genes [1].
- Classically diagnosed in children and presents with seizures, developmental delay, and hypomelanotic macules [2].
- Prevalence is estimated to be 1 in 6000 people [2].
- Renal failure is the leading cause of death in patients with TSC [3].

TSC Imaging Manifestations [2]:

- Renal → angiomyolipomas, cysts, and renal cell carcinoma
- CNS

 subependymal nodules, cortical/subcortical tubers, cerebral white matter radial migration lines, and subependymal giant cell astrocytomas
- Pulmonary → lymphangioleiomyomatosis
- Cardiac → rhabdomyomas
- Hepatic → angiomyolipomas
- Splenic hamartomas

Previous MRI Brain for our patient

Axial T2 FLAIR MRI

Multiple T2/FLAIR hyperintense cortical and subcortical tubers / hamartomas (*)

Axial T2 MRI

Multiple small subependymal nodules (→) compatible with hamartomas

Subsequent Noncontrast CT Chest for our patient

Multiple thin-walled round pulmonary cysts (→) compatible with lymphangioleiomyomatosis

Renal Manifestations of TSC:

- Angiomyolipomas (AMLs)
 - Hamartomatous lesions consisting of abnormal blood vessels, smooth muscle, and adipose tissue [3].
 - Diagnosed as a renal mass containing macroscopic fat [2].
 - Although ~5% may not contain obvious fat
 - Contain micro/macroaneurysms that may spontaneously rupture and bleed [3].
 - Lesions >4 cm are at greater risk of spontaneous hemorrhage [3].
- Cysts
 - Commonly multiple and typically asymptomatic [2].
- Renal Cell Carcinoma
 - Incidence rate is similar to general population (2-3%), but age of onset is significantly lower [2].

Management of renal angiomyolipomas:

- Trending towards nephron-sparing strategies, referred to as active surveillance (AS) [4].
 - Allows for maximum preservation of renal structure and avoids risks associated with procedures [4].
 - mTOR inhibitors are becoming more frequently used as targeted therapy for AMLs that are >4cm [5].
- Active treatment (AT) options include surgical excision, angioembolization and cryoablation [4].
 - Specific situations in which AT is preferred include patients with large tumors (>4 cm), women of childbearing age, or patients who may have difficulties following up in the future [4].
 - Risk-benefit analysis should be performed prior to surgery [5].

- The patient's HGB remained stable after an initial drop, permitting continued active surveillance as the chosen conservative approach.
- Care team considered starting mTOR inhibitors to help reduce risk of bleeding and cytopenias.
- After a 3 day hospital stay and adequate pain management, the patient was discharged home with instructions to follow up with PCP in 1 week and Heme/Onc in ~4 weeks.

References:

- 1. Wang MX, Segaran N, Bhalla S, et al. Tuberous Sclerosis: Current Update. *RadioGraphics*. 2021;41(7):1992-2010. doi:https://doi.org/10.1148/rg.2021210103
- 2. Manoukian SB, Kowal DJ. Comprehensive Imaging Manifestations of Tuberous Sclerosis. American Journal of Roentgenology. 2015;204(5):933-943. doi:https://doi.org/10.2214/ajr.13.12235
- 3. Casper KA, Donnelly LF, Chen B, Bissler JJ. Tuberous Sclerosis Complex: Renal Imaging Findings. *Radiology*. 2002;225(2):451-456. doi:https://doi.org/10.1148/radiol.2252011584
- 4. Daché A, Fatica R, Herts BR, et al. Factors predicting the active treatment of renal angiomyolipoma: 30 years of experience in two tertiary referral centers. *Frontiers in surgery*. 2023;10. doi:https://doi.org/10.3389/fsurg.2023.1094806
- 5. Wang H, Long Q, Wang Y, Liu L, Zhou L, Guo J. Tuberous sclerosis complex-associated renal angiomyolipomas: A single center study of 17 consecutive cases. *Oncology Letters*. 2016;12(2):1501-1506. doi:https://doi.org/10.3892/ol.2016.4766

