AMSER Case of the Month September 2025

2-month-old male with vomiting and failure to thrive.

Aaron Hendrix BS, Georgetown University School of Medicine Arash R. Zandieh MD, MedStar Georgetown University Hospital, Dept. of Radiology

Patient Presentation

2-month-old male, former premature twin gestation (36 weeks, SGA) who presented with failure to thrive, poor weight gain, poor feeding, and non-bloody, non-bilious emesis. Pyloric stenosis was suspected.

What Imaging Should We Order?

Applicable ACR Appropriateness Criteria

Ultrasound was ordered by the pediatrician

Findings (unlabeled)

Findings (unlabeled)

Findings (labeled)

Normal pylorus channel length (<1.6 cm) and normal wall thickness (< 3 mm)

Incidental finding of numerous small hypo-echogenic liver lesions

Findings (labeled)

Numerous hypoechoic lesions randomly distributed diffusely throughout the liver. The lesions are well-circumscribed and measure 2 to 4 mm in size

LEFT LOBE LIVER LONG

Focused side-by-side grayscale and color Doppler imaging demonstrates hypervascular nature of the small hypoechoic lesions

Additional diagnostic work-up was pursued

Laboratory data
MRI of the abdomen and pelvis
Echocardiogram
Bone survey
Genetics profiling

Pertinent Labs

- CBC
 - WBC: 7.9, Hgb: 7.3 (L), Hct: 21.4 (L), PLT: 416
- CMP
 - Na: 139, K: 4.7, Cl: 109, CO2: 21, BUN: 10, Cr: 0.21, GLC: 110, Ca: 10.2
 - Total protein: 5.4, T. Bili: 0.4, AST: 42, ALT: 26, Alk Phos: 289, Albumin: 4.0
- Thyroid function tests
 - TSH: 5.393 (H), T4: 1.32
- Tumor markers
 - AFP: 785.2 (H)
 - Urinary vanillylmandelic acid (VMA) and homovanillic acid (HVA): Negative

Physical Examination

MRI Findings (unlabeled)

MRI Findings (labeled)

MRI of the liver: Extensive T2-hyperintense lesions

Pertinent negatives on MRI scan

- Adrenal glands were normal
- No paraspinal mass
- Normal bones
- Normal marrow signal

Final Dx:

Diffuse Infantile Hepatic Hemangioma

Case Discussion

- DIHH is rare (approximately 1/100,000)
- Pathogenesis is poorly understood
 - Possible dysfunctional response of pluripotent stem cells to hypoxia and RAAS
- Presence of GLUT1 (glucose transporter isoform 1) can help detect IHH and distinguish it from other vascular anomalies
- Most cases of DIHH are asymptomatic and are found incidentally on imaging
- Hepatomegaly is thought to be secondary to IVC compression by rapidly growing vascular masses

Case Discussion

- Anemia, thrombocytopenia, and consumptive coagulopathy can also result due to sequestering of RBCs, platelets, and coagulation factors within the tumors
- Hypothyroidism can result secondary to overproduction of iodothyronine deiodinase type 3 and thyrotropin-like factor
- While IHH is the most common diagnosis in infants <6 months with multiple hypoechoic liver lesions, metastatic disease (neuroblastoma most commonly) should also be considered, particularly in infants older than 6 months.

Case Discussion

Treatment

Propranolol

- 0.6mg/kg Propranolol BID initially, escalating to 1.7mg/kg Propranolol BID over two weeks with treatment sustained for 6-12 months based on clinical condition
 - Notably, during the tapering phase of treatment, rebound growth can be observed
- Though the mechanism is poorly understood, propranolol has an antiproliferative effect in IHH2. Possible mechanisms for this include Vasoconstriction via pericytes, reduction in VEG-F and FGF and inactivation of the RAAS
- Corticosteroids, Vincristine, and Levothyroxine have been used to supplement propranolol in the treatment of DIHH

Surgical or Interventional Radiology treatment

- Indicated with life-threatening symptoms
- Hepatic artery embolization or ligation helps to counteract cardiac failure due to shunting
- Orthoptic liver transplant in DIHH since total hepatectomy is not a viable option

Case outcome

- The patient responded well to propranolol therapy, with rapid resolution of both the liver and the cutaneous hemangiomas.
- Clinical follow-up at 1-year post-treatment showed a thriving, well developing child.

References:

- 1. Kulungowski AM, Alomari AI, Chawla A, Christison-Lagay ER, Fishman SJ. Lessons from a liver hemangioma registry: subtype classification. J Pediatr Surg (2012) 47(1):165–70. doi: 10.1016/j.jpedsurg.2011.10.037
- 2. Léauté-Labrèze C, Dumas de la Roque E, Hubiche T, Boralevi F, Thambo J-B, Taïeb A. Propranolol for severe hemangiomas of infancy. N Engl J Med (2008) 358(24):2649–51. doi: 10.1056/NEJMc0708819
- 3. Shah SD, Baselga E, McCuaig C, Pope E, Coulie J, Boon LM, et al. Rebound growth of infantile hemangiomas after propranolol therapy. Pediatrics (2016) 137(4):e20151754. doi: 10.1542/peds.2015-1754
- 4. Yeh I, Bruckner AL, Sanchez R, Jeng MR, Newell BD, Frieden IJ. Diffuse infantile hepatic hemangiomas: a report of four cases successfully managed with medical therapy. Pediatr Dermatol (2011) 28(3):267–75. doi: 10.1111/j.1525-1470.2011.01421.x

