AMSER Case of the Month September 2025

34 y.o. F G3P1 at 28w6d Presents With A Prenatal Fetal Lung Lesion

Amrit Khooblall, MS-IV

Resident: Dr. Monika Neale

Supervising Physician: Dr. Ruchi Yadav

Cleveland Clinic Foundation

Patient Presentation

- HPI: 34 y.o. F G3P1 at 20w1d
 - Initially presents with limited 1st trimester ultrasound views of the heart then referred for early anatomy ultrasound
- Past Medical History: Gestational diabetes mellitus

Fetal Anatomy Ultrasound at the level of the heart (unlabeled)

Fetal Anatomy Ultrasound at the level of the heart (Reference normal versus our case)

Fetal Anatomy Ultrasound (labeled)

What Imaging Should We Order?

Select the applicable ACR Appropriateness Criteria

Variant 4:

Second and third trimester screening for abnormal finding on ultrasound: major anomalies. Next imaging study.

Procedure	Appropriateness Category	Relative Radiation Level	
US pregnant uterus transabdominal detailed scan	Usually Appropriate	О	
MRI fetal without IV contrast	Usually Appropriate	This imaging modality was	
US echocardiography fetal	Usually Appropriate	ordered by the OB physic	
US pregnant uterus transabdominal follow-up	Usually Appropriate	О	
MRI fetal without and with IV contrast	Usually Not Appropriate	О	

ACR Appropriateness Criteria (continued)

- Ultrasound was inconclusive/limited: Fetal ultrasounds had sub-optimally visualized structures complicated by maternal obesity (BMI >30), reducing image resolution
- Assessment of lesion type & mass effect: : Differentiating between macro- and microcystic CPAM is critical for prognosis & management. MRI would clearly depict potential dextroposition of the heart, aiding in evaluating the degree of thoracic compromise affecting surgical planning.
- Objective lung volume assessment: Fetal MRI enables quantitative lung volume measurement & tracking of Lung-to-Head Ratio (LHR), which would guide delivery planning
- Detection of associated anomalies: Congenital Pulmonary Airway Malformation (CPAM) Type 2 is often associated with other congenital anomalies -MRI allows for comprehensive evaluation of non-pulmonary fetal anatomy.
- Surveillance of fetal hydrops risk: While the CPAM volume ratio (CVR) was 1.02 (below threshold), MRI can rule out hydrops—which if present, would dictate urgent intervention (steroids or fetal surgery).
- Meets ACR criteria for further evaluation of suspected fetal anomaly: ACR guidelines: MRI is appropriate when ultrasound detects or suspects anomalies that require further definition or are not fully visualized.

MRI Fetal w/o Contrast (unlabeled)

MRI Fetal w/o Contrast (Reference normal)

Adams, N.C., Victoria, T., Oliver, E.R. et al. Fetal ultrasound and magnetic resonance imaging: a primer on how to interpret prenatal lung lesions. *Pediatr Radiol* **50**, 1839–1854 (2020). https://doi.org/10.1007/s00247-020-04806-x

MRI Fetal w/o Contrast (labeled)

Rightward mediastinal shift with asymmetrically small right lung.

Enlarged and T2 hyperintense left lower lobe with multifocal cystic areas

Final Diagnosis:

Congenital Pulmonary Airway Malformation (CPAM) Type 2

Congenital Pulmonary Airway Malformation (CPAM) – Type 2

• Rare, benign developmental cystic lung lesion

- Occurs in ~1 per 25,000–35,000 live births
- Classification: Types 0–4 (Stocker classification) based on cyst appearance & region in lung.
- Type 2 lesions (multiple small cysts of bronchiolar regions) often associated with renal, cardiac, or GI anomalies

Presents with respiratory distress in neonates

- Commonly detected prenatally on routine ultrasound
- Many are asymptomatic at birth
- Can present later with recurrent infections & resemble tumor or hyperinflation
- Work-up: Prenatal US → Postnatal CT/MRI → Surgical Resection
 - If CVR > 1.6, risk of hydrops → consider fetal intervention or steroids

Imaging Characteristics & Differential

- Imaging characteristics vary with type & age
 - Type 2: Multiple uniform small cysts, <2 cm
 - CT: Cystic, sharply demarcated, non-enhancing unless infected
 - MRI (fetal): High T2 signal, hyperintense, fluid-filled cysts
 - May be misdiagnosed as infection or mass on radiographs
- Cysts may enlarge with time; superinfection may distort appearance
 - Rarely show air-fluid levels or hemorrhagic debris
 - No systemic feeding vessel or solid component in Type 2 lesions
- Differential for suspected CPAM:
 - CPAM Types 0-4

CPAM	Characteristics	
Type 0	Tracheal/bronchial Cysts < 0.5 cm	
Type 1	Bronchial/bronchiolar Large cysts 2-10 cm	
Type 2	Bronchiolar Solid tissue cysts <2 cm	
Type 3	Alveolar ducts Microcysts < 0.5 cm	
Type 4	Acinar Large cysts >10 cm	

- Gaillard F, Yap J, Campos A, et al. Congenital pulmonary airway malformation. Reference article, Radiopaedia.org. https://doi.org/10.53347/rlD-1156.
- Pederiva, F., Rothenberg, S.S., Hall, N. et al. Congenital lung malformations. Nat Rev Dis Primers 9, 60 (2023). https://doi.org/10.1038/s41572-023-00470-1

Treatment & Genetic Considerations

- Main treatment is resection of the involved lung segment/lobe
 - Elective surgery usually before 1 year of age
 - Resection even in asymptomatic cases to prevent infection or malignancy
- Preoperative planning:
 - CT or MRI to define anatomy, cysts, and exclude feeding vessels
 - Echocardiogram to evaluate for associated cardiac anomalies
 - Respiratory stabilization if symptomatic
- Genetic testing not standard, but:
 - Consider DICER1 mutation screening in solid or atypical lesions (pleuropulmonary blastoma risk)
 - No known inherited syndromes with classic CPAM
- Post-op management and surveillance:
 - Chest imaging to confirm complete resection
 - Monitor for infections, compensatory hyperinflation
 - Long-term prognosis is excellent; lung function usually normal

Patient Outcome

• As of 30w3d:

- Assessment
 - The CPAM volume ratio (CVR) is 1.7, accompanied by notable mediastinal shift but w/o evidence of cardiac compression or fetal hydrops/polyhydramnios.
 - Given presence of macrocystic lesions & considering maternal GDM, steroid administration is deferred
 - Will reconsider if lesion enlarges, hydrops develops, or cardiac function becomes compromised
- Plan
 - 2x-weekly biophysical profile (BPP) evaluations
 - Maintain optimal glycemic control
 - Closely monitor maternal BP & observe for signs/symptoms of preeclampsia.
 - Consultations with NICU & pediatric surgery
 - Planned delivery at 37–38 weeks at Special Delivery Unit (SDU)

References:

- Adams, N.C., Victoria, T., Oliver, E.R. *et al.* Fetal ultrasound and magnetic resonance imaging: a primer on how to interpret prenatal lung lesions. *Pediatr Radiol* **50**, 1839–1854 (2020). https://doi.org/10.1007/s00247-020-04806-x
- AIRP Best Cases in Radiologic-Pathologic Correlation: Type 2 Congenital Cystic Adenomatoid Malformation (Type 2 Congenital Pulmonary Airway Malformation). Sarah W. Kao, Craig W. Zuppan, and Lionel W. Young. RadioGraphics 2011 31:3, 743-748
- American College of Radiology ACR appropriateness criteria: Second and third trimester screening for fetal anomaly. (n.d.). https://acsearch.acr.org/docs/3102400/Narrative/
- Biyyam DR, Chapman T, Ferguson MR, Deutsch G, Dighe MK. Congenital lung abnormalities: embryologic features, prenatal diagnosis, and postnatal radiologic-pathologic correlation. *Radiographics*. 2010;30(6):1721-1738. doi:10.1148/rg.306105508
- Gaillard F, Yap J, Campos A, et al. Congenital pulmonary airway malformation. Reference article, Radiopaedia.org. https://doi.org/10.53347/rID-1156.
- Mehta PA, Sharma G. Congenital Pulmonary Airway Malformation. In: *StatPearls*. Treasure Island (FL): StatPearls Publishing; August 7, 2023.
- Pederiva, F., Rothenberg, S.S., Hall, N. et al. Congenital lung malformations. Nat Rev Dis Primers 9, 60 (2023). https://doi.org/10.1038/s41572-023-00470-1
- Sintim-Damoa, A., Cohen, H.L. Fetal imaging of congenital lung lesions with postnatal correlation. *Pediatr Radiol* **52**, 1921–1934 (2022). https://doi.org/10.1007/s00247-022-05465-w

